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Abstract
We identify quotient polynomial rings isomorphic to the recently found
fundamental fusion algebras of logarithmic minimal models.

PACS numbers: 11.25.Hf, 02.10.Hh

1. Introduction

The fusion algebras of the logarithmic minimal models LM(p, p′) introduced in [1] are
discussed in [2, 3]. In these works, it is found that closure of the so-called fundamental fusion
algebra of LM(p, p′) requires an infinite set of indecomposable representations of rank 1, 2
or 3. The former are so-called Kac representations of which some, but in general only some,
are irreducible (highest weight) representations. It is recalled that the fundamental fusion
algebra is so named since it is generated from the two fundamental Kac representations (2, 1)

and (1, 2),

〈(2, 1), (1, 2)〉p,p′ . (1.1)

We let X and Y denote the commuting fusion matrices associated with the representations (2, 1)

and (1, 2), respectively. Since we consider a countably infinite number of representations,
X and Y are infinite dimensional. The main objective of the present work is to establish the
following proposition where Tn(x) and Un(x) are Chebyshev polynomials of the first and
second kinds, respectively, see Appendix A.

Proposition 1.1. The fundamental fusion algebra of the logarithmic minimal model
LM(p, p′) is isomorphic to the polynomial ring generated by X and Y modulo the ideal
Ip,p′(X, Y ) = Pp,p′(X, Y )C[X, Y ], where

Pp,p′(X, Y ) =
(

Tp

(
X

2

)
− Tp′

(
Y

2

))
Up−1

(
X

2

)
Up′−1

(
Y

2

)
(1.2)

that is

〈(2, 1), (1, 2)〉p,p′ � C[X, Y ]/Ip,p′(X, Y ). (1.3)
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It is known [4] that a similar isomorphism exists for every rational conformal field theory.
The above proposition thus extends this to include the irrational logarithmic minimal models
as well. We find, though, that the conjectured existence of an associated fusion potential in the
case of a rational conformal field theory [4] does not extend straightforwardly to the irrational
LM(p, p′). That is, in Appendix B, we show that the constraint Pp,p′(X, Y ) = 0 cannot be
derived from a polynomial potential in X and Y.

Notation. With Zn,m = Z ∩ [n,m] denoting the set of integers from n to m, both included,
we shall be using the following notation: a ∈ Z0,p−1; b ∈ Z0,p′−1; a0, r0 ∈ Z1,p−1;
b0, s0 ∈ Z1,p′−1.

2. Fundamental fusion algebra of LM(p, p′)

A logarithmic minimal model LM(p, p′) is defined [1] for every coprime pair of positive
integers p < p′. The model LM(p, p′) has central charge

c = 1 − 6
(p′ − p)2

pp′ (2.1)

and conformal weights

�r,s = (rp′ − sp)2 − (p′ − p)2

4pp′ , r, s ∈ N. (2.2)

2.1. Representations

We recall the set of representations
{
Ra,b

r,s

}
appearing in the description of the fundamental

fusion algebra of LM(p, p′) [3]. The representation Ra,b
r,s is of rank 1 if a = b = 0; it is of

rank 2 if a = 0, b �= 0 or a �= 0, b = 0; while it is of rank 3 if a, b �= 0. The lower indices r
and s are positive integers addressed in the following.

The representations of the form R0,0
r,s are the Kac representations and are also denoted

as (r, s). In connection with the fundamental fusion algebra, there are three classes of Kac
representations: the irreducible, the fully reducible and the reducible yet indecomposable Kac
representations

{(r, kp′), (kp, s); r ∈ Z1,p; s ∈ Z1,p′ ; k ∈ N},
(2.3)

{(kp, k′p′); k, k′ ∈ N + 1}, {(r0, s0)}
here listed in the indicated order.

The higher rank representations are classified according to their decomposability. For
k, k′ ∈ N,Ra0,0

pk,s0
and R0,b0

r0,p′k′ are indecomposable representations of rank 2; Ra0,0
pk,p′k′ and

R0,b0
pk,p′k′ are indecomposable representations of rank 2 if k = 1 or k′ = 1 but decomposable

representations of rank 2 if k, k′ > 1; Ra0,b0
pk,p′k′ is an indecomposable representation of rank 3

if k = 1 or k′ = 1 but a decomposable representation of rank 3 if k, k′ > 1.
The full reducibility or decomposability of some of these representations is made manifest

[3] by

Ra,b
pk,p′k′ =

k+k′−1⊕
j=|k−k′|+1,by2

Ra,b
pj,p′ =

k+k′−1⊕
j=|k−k′|+1,by2

Ra,b
p,p′j , k, k′ ∈ N. (2.4)

Ensuing identifications are

Ra,b
pk,p′k′ = Ra,b

pk′,p′k, (2.5)
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with (kp, p′) = (p, kp′) corresponding to the identification of a pair of irreducible Kac
representations of identical conformal weights. The decompositions (2.4) imply that the
fundamental fusion algebra of LM(p, p′) can be written in closed form without reference to
the fully reducible Kac representations nor to the decomposable higher rank representations.
Indeed, according to [3], closure of the fundamental fusion algebra requires the inclusion of
the representations

〈(2, 1), (1, 2)〉p,p′ = 〈
(r0, s0), (pk, s0), (r0, p

′k), (pk, p′),

Ra0,0
pk,s0

,Ra0,0
pk,p′ ,R0,b0

r0,p′k,R
0,b0
p,p′k,R

a0,b0
pk,p′

〉
p,p′ , (2.6)

where k ∈ N.

2.2. Fusion

The fusion rules of LM(p, p′) are associative, commutative and separate into a horizontal
and a vertical part [3]. We indicate this separation with a general but somewhat formal
evaluation. Letting Ar,s = ār,1 ⊗ a1,s , Br ′,s ′ = b̄r ′,1 ⊗ b1,s ′ , ār,1 ⊗ b̄r ′,1 = ⊕

r ′′ c̄r ′′,1 and
a1,s ⊗ b1,s ′ = ⊕

s ′′ c1,s ′′ , our fusion prescription yields

Ar,s ⊗ Br ′,s ′ = (ār,1 ⊗ a1,s) ⊗ (b̄r ′,1 ⊗ b1,s ′) = (ār,1 ⊗ b̄r ′,1) ⊗ (a1,s ⊗ b1,s ′)

=
(⊕

r ′′
c̄r ′′,1

)
⊗

(⊕
s ′′

c1,s ′′

)
=

⊕
r ′′,s ′′

Cr ′′,s ′′ , (2.7)

where Cr ′′,s ′′ = c̄r ′′,1 ⊗ c1,s ′′ . As illustration, we have

Ra,0
pk,1 ⊗ R0,b

1,p′k′ = Ra,b
pk,p′k′ . (2.8)

Since the fundamental fusion algebra is built from repeated fusions of the two fundamental
representations (2, 1) and (1, 2), we now list all fusions of one of these fundamental
representations with one of the representations (all of which are indecomposable) appearing
in (2.6). In the horizontal direction, we have

(2, 1) ⊗ (r0, s0) = (r0 − 1, s0) ⊕ (r0 + 1, s0)

(2, 1) ⊗ (pk, s0) = δp,1((k − 1, s0) ⊕ (k + 1, s0)) ⊕ (1 − δp,1)R1,0
pk,s0 (2.9)

(2, 1) ⊗ (r0, p
′k) = (r0 − 1, p′k) ⊕ (r0 + 1, p′k)

(2, 1) ⊗ (pk, p′) = δp,1((k − 1, p′) ⊕ (k + 1, p′)) ⊕ (1 − δp,1)R1,0
pk,p′

and

(2, 1) ⊗ Ra0,0
pk,s0

= δp,2((2k − 2, s0) ⊕ 2(2k, s0) ⊕ (2k + 2, s0))

⊕ (1 − δp,2)((1 + δa0,1)R
a0−1,0
pk,s0

⊕ (1 − δa0,p−1)Ra0+1,0
pk,s0

⊕ δa0,p−1((pk − p, s0) ⊕ (pk + p, s0)))

(2, 1) ⊗ Ra0,0
pk,p′ = δp,2((2k − 2, p′) ⊕ 2(2k, p′) ⊕ (2k + 2, p′))

⊕ (1 − δp,2)((1 + δa0,1)R
a0−1,0
pk,p′ ⊕ (1 − δa0,p−1)Ra0+1,0

pk,p′

⊕ δa0,p−1((pk − p, p′) ⊕ (pk + p, p′)))

(2, 1) ⊗ R0,b0
r0,p′k = R0,b0

r0−1,p′k ⊕ R0,b0
r0+1,p′k

(2, 1) ⊗ R0,b0
p,p′k = δp,1

(
R0,b0

1,p′k−p′ ⊕ R0,b0
1,p′k+p′

) ⊕ (1 − δp,1)R1,b0
pk,p′

(2, 1) ⊗ Ra0,b0
pk,p′ = δp,2

(
R0,b0

2k−2,p′ ⊕ 2R0,b0
2k,p′ ⊕ R0,b0

2k+2,p′
)

⊕ (1 − δp,2)((1 + δa0,1)R
a0−1,b0
pk,p′ ⊕ (1 − δa0,p−1)Ra0+1,b0

pk,p′

⊕ δa0,p−1(R0,b0
p,p′k−p′ ⊕ R0,b0

p,p′k+p′)) (2.10)

3
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while in the vertical direction we have

(1, 2) ⊗ (r0, s0) = (r0, s0 − 1) ⊕ (r0, s0 + 1)

(1, 2) ⊗ (pk, s0) = (pk, s0 − 1) ⊕ (pk, s0 + 1)
(2.11)

(1, 2) ⊗ (r0, p
′k) = R0,1

r0,p′k

(1, 2) ⊗ (pk, p′) = R0,1
p,p′k

and

(1, 2) ⊗ Ra0,0
pk,s0

= Ra0,0
pk,s0−1 ⊕ Ra0,0

pk,s0+1

(1, 2) ⊗ Ra0,0
pk,p′ = Ra0,1

pk,p′

(1, 2) ⊗ R0,b0
r0,p′k = (

1 + δb0,1
)
R0,b0−1

r0,p′k ⊕ (
1 − δb0,p′−1

)
R0,b0+1

r0,p′k

⊕ δb0,p′−1((r0, p
′k − p′) ⊕ (r0, p

′k + p′))

(1, 2) ⊗ R0,b0
p,p′k = δp′,2((k − 1, 2) ⊕ 2(k, 2) ⊕ (k + 1, 2))

⊕ (1 − δp′,2)
((

1 + δb0,1
)
R0,b0−1

p,p′k ⊕ (
1 − δb0,p′−1

)
R0,b0+1

p,p′k

⊕ δb0,p′−1
(
(pk − p, p′) ⊕ (pk + p, p′)

))
(1, 2) ⊗ Ra0,b0

pk,p′ = (
1 + δb0,1

)
Ra0,b0−1

pk,p′ ⊕ (
1 − δb0,p′−1

)
Ra0,b0+1

pk,p′

⊕ δb0,p′−1
(
Ra0,0

pk−p,p′ ⊕ Ra0,0
pk+p,p′

)
. (2.12)

Here we have used 1 � p < p′ and introduced the simplifying notation

(0, s) = (r, 0) = Ra,b
0,s = Ra,b

r,0 = 0. (2.13)

Even though we included many details on the fundamental fusion algebras in [2, 3], the lists
(2.9) through (2.12) were not presented as explicitly as above. Finally, it is noted that the Kac
representation (1, 1) is the identity of the fundamental fusion algebra.

3. Fundamental fusion ring of LM(p, p′)

3.1. Fusion matrices and fusion rings

The fusion algebra, see [5] for example,

φi ⊗ φj =
⊕
k∈J

Ni,j
kφk, i, j ∈ J , (3.1)

of a rational conformal field theory is finite and can be represented by a commutative matrix
algebra 〈Ni; i ∈ J 〉 where the entries of the square |J | × |J | matrix Ni are

(Ni)j
k = Ni,j

k, i, j, k ∈ J (3.2)

and where the fusion product ⊗ has been replaced by ordinary matrix multiplication. In [4],
Gepner found that every such algebra is isomorphic to a ring of polynomials in a finite set of
variables modulo an ideal defined as the vanishing conditions of a finite set of polynomials
in these variables. He also conjectured that this ideal of constraints corresponds to the local
extrema of a potential, see [6, 7] for further elaborations on this conjecture.

Since the fundamental fusion algebra of the logarithmic minimal model LM(p, p′)
contains infinitely many elements, the associated fusion matrices are infinite dimensional.
The corresponding conformal field theory is irrational (in this case logarithmic [1]) and the
results of Gepner [4] do not necessarily apply. We will generally denote these fusion matrices
by N(r,s) or NRa,b

r,s
, cf (2.6). Associativity of the original commutative fusion algebra ensures

4
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that these fusion matrices form a commutative matrix algebra. The fusion matrix associated
with the fundamental representation (2, 1) or (1, 2) is also denoted as X = N(2,1) or Y = N(1,2),
respectively. As we will argue below, every fusion matrix can be written as a polynomial in X
and Y and these polynomials are naturally expressed in terms of Chebyshev polynomials, see
Appendix A. With this realization, and in correspondence with a naive extension of the results
by Gepner [4], we then identify a quotient polynomial (fusion) ring structure isomorphic to
the fundamental fusion algebra of LM(p, p′). There does not, on the other hand, appear
to be a fusion potential naturally associated with this fusion ring. That is, we demonstrate
in Appendix B that there is no such polynomial fusion potential in the variables X and Y. It
is emphasized that this is not in violation of Gepner’s results since our logarithmic minimal
model LM(p, p′) is irrational.

As preparation for the derivation of the fusion ring, we now turn our attention to some
relations involving Chebyshev polynomials.

3.2. Chebyshev relations

In the following, we consider two possibly non-invertible and possibly non-commuting entities
x and y and define the polynomial

Mp,p′(x, y) = U2p−1(x)Up′−1(y) − Up−1(x)U2p′−1(y). (3.3)

Even though proposition 1.1 concerns the commutative variables X and Y, the results in
this subsection (propositions 3.1, 3.2 and corollary 3.3) are all valid for non-commutative
variables as well, hence the notation x and y. To ease the notation, we will often abbreviate
f (x, y) ≡ g(x, y) (mod Mp,p′(x, y)) simply by f (x, y) ≡ g(x, y).

Proposition 3.1. For k ∈ N and modulo Mp,p′(x, y), we have

Upk−1(x)Up′−1(y) ≡ Up−1(x)Up′k−1(y). (3.4)

Proof. This is trivially true for k = 1, 2 and we use induction in k to complete the proof. First,
though, we prove (3.4) for k = 3 in which case

U3p−1(x)Up′−1(y) = (2Tp(x)U2p−1(x) − Up−1(x))Up′−1(y)

≡ 2Tp(x)Up−1(x)U2p′−1(y) − Up−1(x)Up′−1(y)

= U2p−1(x)Up′−1(y)2Tp′(y) − Up−1(x)Up′−1(y)

≡ Up−1(x)(U2p′−1(y)2Tp′(y) − Up′−1(y))

= Up−1(x)U3p′−1(y), (3.5)

where the three equalities all follow from (A.10). The two equivalences are both immediate
consequences of the definition of Mp,p′(x, y) in (3.3). To establish the general induction step
for k � 3, we consider

U(k+1)p−1(x)Up′−1(y) = (2Tp(x)Ukp−1(x) − U(k−1)p−1(x))Up′−1(y)

≡ 2Tp(x)Up−1(x)Ukp′−1(y) − U(k−1)p−1(x)Up′−1(y)

= 2Tp(x)Up−1(x)(2T(k−1)p′(y)Up′−1(y)

+ U(k−2)p′−1(y)) − U(k−1)p−1(x)Up′−1(y)

≡ Up−1(x)U2p′−1(y)2T(k−1)p′(y)

+ 2Tp(x)U(k−2)p−1(x)Up′−1(y) − U(k−1)p−1(x)Up′−1(y)

= Up−1(x)(U(k+1)p′−1(y) − U(k−3)p′−1(y))

+ (U(k−1)p−1(x) + U(k−3)p−1(x))Up′−1(y) − U(k−1)p−1(x)Up′−1(y)

≡ Up−1(x)U(k+1)p′−1(y) (3.6)

5
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where, again, all three equalities follow from (A.10), while the three equivalences follow by
induction assumption with the second equivalence also relying on (A.10). �

Proposition 3.2. For k, k′ ∈ N and modulo Mp,p′(x, y), we have

Upk−1(x)Up′k′−1(y) ≡
k+k′−1∑

j=|k−k′|+1, by 2

Upj−1(x)Up′−1(y) ≡
k+k′−1∑

j=|k−k′|+1, by 2

Up−1(x)Up′j−1(y).

(3.7)

Proof. To prove the first equivalence, we initially assume that k � k′. For k = 2n + 1 odd and
modulo Mp,p′(x, y), we then have

Up(2n+1)−1(x)Up′k′−1(y) =
⎛
⎝1 + 2

n∑
j=1

T2jp(x)

⎞
⎠ Up−1(x)Up′k′−1(y)

≡
⎛
⎝1 + 2

n∑
j=1

T2jp(x)

⎞
⎠ Upk′−1(x)Up′−1(y)

=
⎛
⎝Upk′−1(x) +

n∑
j=1

(U(k′−2j)p−1(x) + U(k′+2j)p−1(x))

⎞
⎠ Up′−1(y),

(3.8)

which is readily seen to equal the first sum expression of (3.7). The first and second equalities
of (3.8) follow from (A.11) and (A.10), respectively. For k = 2n even and once again
employing (A.11) and (A.10), we likewise have

U2np−1(x)Up′k′−1(y) = 2
n∑

j=1

T(2j−1)p(x)Up−1(x)Uk′p′−1(y)

≡ 2
n∑

j=1

T(2j−1)p(x)Uk′p−1(x)Up′−1(y)

=
n∑

j=1

(U(k′+1−2j)p−1(x) + U(k′−1+2j)p−1(x))Up′−1(y), (3.9)

which is also readily seen to equal the first sum expression of (3.7). The first equivalence of
(3.7) for k > k′ follows similarly. The second equivalence of (3.7) is a direct consequence of
proposition 3.1. �

Corollary 3.3. For k, k′ ∈ N and modulo Mp,p′(x, y), we have

Upk−1(x)Up′k′−1(y) ≡ Upk′−1(x)Up′k−1(y). (3.10)

Proof. This follows from proposition 3.2 since the sum expressions of (3.7) are symmetric in
k and k′. �

3.3. Determination of fusion matrices and ring structure

We now show that the generators of the fundamental fusion algebra (2.6) can be expressed as
polynomials in the fusion matrices of the fundamental representations

X = N(2,1), Y = N(1,2). (3.11)

6
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Proposition 3.4. Modulo the polynomial Pp,p′(X, Y ) defined in (1.2), the matrices

N(r0,s0)(X, Y ) = Ur0−1

(
X

2

)
Us0−1

(
Y

2

)

N(pk,s0)(X, Y ) = Upk−1

(
X

2

)
Us0−1

(
Y

2

)
(3.12)

N(r0,p′k)(X, Y ) = Ur0−1

(
X

2

)
Up′k−1

(
Y

2

)

N(pk,p′)(X, Y ) = Upk−1

(
X

2

)
Up′−1

(
Y

2

)

and

NRa0 ,0
pk,s0

(X, Y ) = 2Ta0

(
X

2

)
N(pk,s0)(X, Y )

NRa0 ,0

pk,p′
(X, Y ) = 2Ta0

(
X

2

)
N(pk,p′)(X, Y )

NR0,b0
r0 ,p′k

(X, Y ) = 2N(r0,p′k)(X, Y )Tb0

(
Y

2

)
(3.13)

NR0,b0
p,p′k

(X, Y ) = 2N(p,p′k)(X, Y )Tb0

(
Y

2

)

NRa0 ,b0
pk,p′

(X, Y ) = 4Ta0

(
X

2

)
N(pk,p′)(X, Y )Tb0

(
Y

2

)

satisfy the fusion rules (2.9) through (2.12) with the fusion product ⊗ and direct summation
⊕ replaced by matrix multiplication and addition, respectively. Since every participating
representation can be written in the form Ra,b

r,s , the associated fusion matrix thus reads

NRa,b
r,s

(X, Y ) = (2 − δa,0)Ta

(
X

2

)
Ur−1

(
X

2

)
(2 − δb,0)Tb

(
Y

2

)
Us−1

(
Y

2

)
. (3.14)

Proof. There are 18 fusion rules to establish. The first one appears in (2.9) and reads

(2, 1) ⊗ (r0, s0) ↔ XUr0−1

(
X

2

)
Us0−1

(
Y

2

)
=

(
Ur0−2

(
X

2

)
+ Ur0

(
X

2

))
Us0−1

(
Y

2

)
↔ (r0 − 1, s0) ⊕ (r0 + 1, s0). (3.15)

More generally, the task is to decompose the products

(2, 1) ⊗ Ra,b
r,s ↔ X(2 − δa,0)Ta

(
X

2

)
Ur−1

(
X

2

)
(2 − δb,0)Tb

(
Y

2

)
Us−1

(
Y

2

)
(3.16)

and

(1, 2) ⊗ Ra,b
r,s ↔ (2 − δa,0)Ta

(
X

2

)
Ur−1

(
X

2

)
(2 − δb,0)YTb

(
Y

2

)
Us−1

(
Y

2

)
(3.17)

in terms of polynomials (3.12) and (3.13) thereby demonstrating that the fusion rules (2.9)
through (2.12) are indeed satisfied. To this end, it is noted that

2Pp,p′(X, Y ) = Mp,p′

(
X

2
,
Y

2

)
(3.18)

7
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(where Mp,p′(x, y) is defined in (3.3)) thus permitting us to draw on propositions 3.1 and 3.2.
Establishing the remaining 17 fusion rules is now straightforward so we only include one of
them as illustration, namely the rule associated with the fusion product

(1, 2) ⊗ R0,b0
p,p′k ↔ Up−1

(
X

2

)
2YTb0

(
Y

2

)
Up′k−1

(
Y

2

)
. (3.19)

For p′ = 2, in which case p = 1 and b0 = 1, the right-hand side reads(
2T1

(
Y

2

))2

U2k−1

(
Y

2

)
= U2k−3

(
Y

2

)
+ 2U2k−1

(
Y

2

)
+ U2k+1

(
Y

2

)

≡ Uk−2

(
X

2

)
U1

(
Y

2

)
+ 2Uk−1

(
X

2

)
U1

(
Y

2

)
+ Uk

(
X

2

)
U1

(
Y

2

)
↔ (k − 1, 2) ⊕ 2(k, 2) ⊕ (k + 1, 2), (3.20)

where the equivalence is modulo P1,2(X, Y ). For p′ > 2, the right-hand side of (3.19) reads

Up−1

(
X

2

)
2YTb0

(
Y

2

)
Up′k−1

(
Y

2

)
= Up−1

(
X

2

) (
Up′k−b0−2

(
Y

2

)
+ Up′k−b0

(
Y

2

)

+ Up′k+b0−2

(
Y

2

)
+ Up′k+b0

(
Y

2

))
. (3.21)

For b0 = 1, the right-hand side of this equals

Up−1

(
X

2

) (
Up′k−3

(
Y

2

)
+ 2Up′k−1

(
Y

2

)
+ Up′k+1

(
Y

2

))
↔ 2(p, p′k) ⊕ R0,2

p,p′k = 2R0,0
p,p′k ⊕ R0,2

p,p′k (3.22)

while for 1 < b0 < p′ − 1, it equals

Up−1

(
X

2

) (
Up′k−b0−2

(
Y

2

)
+ Up′k−b0

(
Y

2

)
+ Up′k+b0−2

(
Y

2

)
+ Up′k+b0

(
Y

2

))
↔ R0,b0−1

p,p′k ⊕ R0,b0+1
p,p′k , (3.23)

whereas it equals

Up−1

(
X

2

) (
Up′(k−1)−1

(
Y

2

)
+ Up′k−(p′−2)−1

(
Y

2

)
+ Up′k+(p′−2)−1

(
Y

2

)
+ Up′(k+1)−1

(
Y

2

))

≡ Up−1

(
X

2

)(
Up′k−(p′−2)−1

(
Y

2

)
+ Up′k+(p′−2)−1

(
Y

2

))

+

(
Up(k−1)−1

(
X

2

)
+ Up(k+1)−1

(
X

2

))
Up′−1

(
Y

2

)

↔ R0,p′−2
p,p′k ⊕ (p(k − 1), p′) ⊕ (p(k + 1), p′) (3.24)

for b0 = p′ − 1 where the equivalence is modulo P1,2(X, Y ). This completes the proof of the
fourth fusion rule of (2.12). �

Proposition 3.5. The matrices defined by (3.12) and (3.13) in proposition 3.4 satisfy the fusion
prescription outlined in (2.7) with the fusion product ⊗ and direct summation ⊕ replaced by
matrix multiplication and addition, respectively.

8
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Proof. In analogy with (2.7) and using (3.14), we have

Ra,b
r,s ⊗ Ra′,b′

r ′,s ′ ↔
{
(2 − δa,0)Ta

(
X

2

)
Ur−1

(
X

2

)
(2 − δb,0)Tb

(
Y

2

)
Us−1

(
Y

2

)}

×
{
(2 − δa′,0)Ta′

(
X

2

)
Ur ′−1

(
X

2

)
(2 − δb′,0)Tb′

(
Y

2

)
Us ′−1

(
Y

2

)}

=
{
(2 − δa,0)Ta

(
X

2

)
Ur−1

(
X

2

)
(2 − δa′,0)Ta′

(
X

2

)
Ur ′−1

(
X

2

)}

×
{
(2 − δb,0)Tb

(
Y

2

)
Us−1

(
Y

2

)
(2 − δb′,0)Tb′

(
Y

2

)
Us ′−1

(
Y

2

)}

=
{∑

r ′′,a′′
(2 − δa′′,0)Ta′′

(
X

2

)
Ur ′′−1

(
X

2

)}

×
{∑

s ′′,b′′
(2 − δb′′,0)Tb′′

(
Y

2

)
Us ′′−1

(
Y

2

)}

↔
⊕

r ′′,s ′′,a′′,b′′
Ra′′,b′′

r ′′,s ′′ . (3.25)

�

In terms of polynomials (3.12) and (3.13) in the commuting variables X and Y, it is noted that
proposition 3.1 corresponds to the identifications

(kp, p′) = (p, kp′) (3.26)

of irreducible Kac representations, while the analogue of the decompositions (2.4) follow
straightforwardly from proposition 3.2 and the product form of the fusion matrices (3.13).
Finally, corollary 3.3 corresponds to the identifications (2.5). We may thus conclude that,
modulo the polynomial Pp,p′(X, Y ), the matrices defined in (3.12) and (3.13) provide a
fusion-matrix realization of the fundamental fusion algebra of LM(p, p′).

Our final objective here is to identify the polynomial ring structure isomorphic to this
fusion algebra. First, we argue that C[x, y] is equivalent to the span of the combinations of
Chebyshev polynomials (3.12) and (3.13) used in the realization of the fundamental fusion
algebra. Since Un(z) is a polynomial in z of degree n, we have

spanC{zn; n ∈ Z0,N } = spanC{Un(z); n ∈ Z0,N }. (3.27)

Furthermore,

(2 − δa,0)Ta(z)Upk−1(z) = Upk−a−1(z) + Upk+a−1(z) (3.28)

implies that for N = κp + α where κ ∈ N ∪ {0} and α ∈ Z0,p−1 we have

spanC{zn; n ∈ Z0,N } = spanC{(2 − δa,0)Ta(z)Upk−1(z), (2 − δa′,0)Ta′(z)Upκ−1(z);
k ∈ Z0,κ−1, a ∈ Z0,p−1, a

′ ∈ Z0,α}. (3.29)

For commuting variables x and y, we thus have

C[x, y] = spanC{Un(x)Un′(y); n, n′ ∈ N ∪ {0}}
= spanC{(2 − δa,0)Ta(x)Upk−1(x)(2 − δb,0)Tb(y)Up′k′−1(y);
k, k′ ∈ N ∪ {0}, a ∈ Z0,p−1, b ∈ Z0,p′−1}. (3.30)

Now, the matrices X and Y satisfy an infinity of conditions, but as demonstrated above,
they are all consequences of a single condition, namely

Pp,p′(X, Y ) = 0. (3.31)

9
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We can therefore conclude that the fusion-matrix realization of the fundamental fusion algebra
of the logarithmic minimal model LM(p, p′) is isomorphic to the ring of polynomials
in X and Y modulo the ideal defined by (3.31). This is the content of our main result,
proposition 1.1.

4. Critical dense polymers and critical percolation

When choosing a basis in which to examine the fusion matrices associated with the fundamental
fusion algebra (2.6), it is natural to separate the set of generators into families. First, there is the
finite set of reducible yet indecomposable Kac representations of rank 1. These representations
are of the form (r0, s0) and there are (p − 1)(p′ − 1) such representations. The remaining
infinitely many representations are of the form Ra,b

r,s (where R0,0
r,s = (r, s)) and are naturally

organized into families labeled by the values of r, s, a, b where r and s are given modulo p
and p′, respectively, cf (2.6). An example of such a family is thus

{
Rp−1,0

pk,s0
; k ∈ N

}
, and every

such family is isomorphic to N. By simple inspection of (2.6), it follows that the number of
these infinite-dimensional families is

Nf = (3p − 1)(3p′ − 1) − 1

3
. (4.1)

This means that the infinite-dimensional fusion matrices are naturally realized as block matrices
where each rectangular block is of dimension (p −1)(p′ −1)× (p −1)(p′ −1), (p −1)(p′ −
1) × ∞,∞ × (p − 1)(p′ − 1) or ∞ × ∞, and the total number of blocks is (Nf + 1 − δp,1)

2.
Multiplication or addition of two matching fusion matrices is performed by first treating the
blocks as entries of (Nf +1−δp,1)×(Nf +1−δp,1)-matrices followed by ordinary multiplication
or addition of the matrix blocks as infinite-dimensional matrices. Once the various blocks
have been identified, this arithmetic can of course be carried out by introducing a common
cut-off to the dimensions of the infinite matrix blocks which is ultimately considered to run
off to infinity.

In the two important examples of critical dense polymersLM(1, 2) and critical percolation
LM(2, 3), we will now show that the explicitly constructed (infinite-dimensional) fusion
matrices X and Y indeed satisfy the conditions underlying our analysis of the polynomial
fusion ring above, namely [X, Y ] = 0 and Pp,p′(X, Y ) = 0.

4.1. Critical dense polymers LM(1, 2)

In the basis{
(1, 1), (2, 1), (3, 1), . . . ; (1, 2), (1, 4), (1, 6), . . . ;R0,1

1,2,R
0,1
1,4,R

0,1
1,6, . . .

}
(4.2)

we have

X =
⎛
⎝D 0 0

0 D 0
0 0 D

⎞
⎠ , Y =

⎛
⎝0 I 0

0 0 I

0 D+ 0

⎞
⎠ , (4.3)

where each of the nine entries is an infinite-dimensional square matrix with D and D+ defined
as

D =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1 0 1
1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠ , D+ = D + 2I. (4.4)

10
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Proposition 4.1.

[X, Y ] = 0 (4.5)

and

0 = 2P1,2(X, Y ) = (X − Y 2 + 2)Y. (4.6)

Proof. With every explicitly written matrix entry being an infinite-dimensional matrix, the
first identity (4.5) follows from

XY =
⎛
⎝0 D 0

0 0 D

0 D2 + 2D 0

⎞
⎠ = YX, (4.7)

while the second identity (4.6) follows from

X −Y 2 + 2 =
⎛
⎝D 0 0

0 D 0
0 0 D

⎞
⎠−

⎛
⎝0 0 I

0 D+ 0
0 0 D+

⎞
⎠ +

⎛
⎝2I 0 0

0 2I 0
0 0 2I

⎞
⎠ =

⎛
⎝D+ 0 −I

0 0 0
0 0 0

⎞
⎠ (4.8)

and hence

(X − Y 2 + 2)Y =
⎛
⎝D+ 0 −I

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 I 0

0 0 I

0 D+ 0

⎞
⎠ =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ . (4.9)

�

We emphasize that since Y does not have an inverse, it is obvious that, despite the algebraic
factorization of P1,2(X, Y ), the vanishing condition (4.6) for P1,2(X, Y ) is inequivalent to the
vanishing condition for the factor X − Y 2 + 2. This is clear from (4.8) as well.

In terms of the fundamental fusion matrices X and Y, the fusion matrices associated with
the representations (4.2) read

(k, 1) ↔ Uk−1

(
X

2

)
, (1, 2k) ↔ U2k−1

(
Y

2

)
, R0,1

1,2k ↔ U2k−2

(
Y

2

)
+ U2k

(
Y

2

)
,

(4.10)

where k ∈ N. According to proposition 1.1, the fundamental fusion algebra of critical dense
polymers LM(1, 2) is isomorphic to the quotient polynomial ring structure generated by X
and Y modulo the ideal defined by (4.6). Abbreviating the ideal by its defining polynomial,
we thus have

〈(1, 2), (2, 1)〉1,2 � C[X, Y ]/(XY − Y 3 + 2Y ). (4.11)

4.2. Critical percolation LM(2, 3)

In the basis{
(1, 1), (1, 2); (2, 1), (4, 1), (6, 1), . . . ; (2, 2), (4, 2), (6, 2) . . . ; (1, 3), (1, 6), (1, 9), . . . ;

(2, 3), (4, 3), (6, 3), . . . ;R1,0
2,1,R

1,0
4,1,R

1,0
6,1, . . . ;R1,0

2,2,R
1,0
4,2,R

1,0
6,2, . . . ;R1,0

2,3,R
1,0
4,3,R

1,0
6,3, . . . ;

R0,1
1,3,R

0,1
1,6,R

0,1
1,9, . . . ;R0,1

2,3,R
0,1
2,6,R

0,1
2,9, . . . ;R0,2

1,3,R
0,2
1,6,R

0,2
1,9, . . . ;R0,2

2,3,R
0,2
2,6,R

0,2
2,9, . . . ;

R1,1
2,3,R

1,1
4,3,R

1,1
6,3, . . . ;R1,2

2,3,R
1,2
4,3,R

1,2
6,3, . . .

}
(4.12)
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we have

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Eu Ed 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0 0 0
0 D+ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 D+ 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 D+ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0 D+ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 D+ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.13)

and

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 0 Ed 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0 0 0
0 I 0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 I 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 2I 0 0 0 0 0 0 I 0 0 0
0 0 0 0 2I 0 0 0 0 0 0 I 0 0
0 0 0 D 0 0 0 0 I 0 0 0 0 0
0 0 0 0 D 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 2I 0 0 0 0 0 I

0 0 0 0 0 0 0 D 0 0 0 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.14)

where

� =
(

0 1
1 0

)
, Eu =

(
1 0 0 . . .

0 0 0 . . .

)
, Ed =

(
0 0 0 . . .

1 0 0 . . .

)
. (4.15)

Denoting the explicitly written entries of X (and similarly of Y) by Xi,j where i, j ∈ Z1,14, the
entry X1,1 is a 2×2 matrix; the entry X1,j for j ∈ Z2,14 consists of two infinite rows; the entry
Xi,1 for i ∈ Z2,14 consists of two infinite columns; whereas the entry Xi,j for i, j ∈ Z2,14 is
an infinite-dimensional matrix like (4.4).

Proposition 4.2.

[X, Y ] = 0 (4.16)

and

0 = 2P2,3(X, Y ) = X(X2 − Y 3 + 3Y − 2)(Y 2 − 1). (4.17)

Proof. As in the case of proposition 4.1, this proposition follows by direct inspection. �
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In terms of the fundamental fusion matrices X and Y, the fusion matrices associated with the
representations (4.12) read

(1, 1) ↔ 1, (1, 2) ↔ Y, (2k, 1) ↔ U2k−1

(
X

2

)
, (2k, 2) ↔ U2k−1

(
X

2

)
Y

(1, 3k) ↔ U3k−1

(
Y

2

)
, (2k, 3) ↔ U2k−1

(
X

2

)
(Y 2 − 1)

R1,0
2k,1 ↔ XU2k−1

(
X

2

)
, R1,0

2k,2 ↔ XU2k−1

(
X

2

)
Y, R1,0

2k,3 ↔ XU2k−1

(
X

2

)
(Y 2 − 1)

(4.18)

R0,1
1,3k ↔ YU3k−1

(
Y

2

)
, R0,2

1,3k ↔ (Y 2 − 2)U3k−1

(
Y

2

)

R0,1
2,3k ↔ XYU3k−1

(
Y

2

)
, R0,2

2,3k ↔ X(Y 2 − 2)U3k−1

(
Y

2

)

R1,1
2k,3 ↔ XU2k−1

(
X

2

)
(Y 3 − Y ), R1,2

2k,3 ↔ XU2k−1

(
X

2

)
(Y 4 − 3Y 2 + 2),

where k ∈ N. According to proposition 1.1, the fundamental fusion algebra of critical
percolation LM(2, 3) is isomorphic to the quotient polynomial ring structure generated by X
and Y modulo the ideal defined by (4.17). Abbreviating the ideal by its defining polynomial,
we thus have

〈(1, 2), (2, 1)〉2,3 � C[X, Y ]/(X3Y 2 − X3 − XY 5 + 4XY 3 − 2XY 2 − 3XY + 2X). (4.19)

5. Conclusion

We have derived a fusion-matrix realization of the fundamental fusion algebra [2, 3] of every
logarithmic minimal model LM(p, p′) [1]. The various fusion matrices are all expressed in
terms of Chebyshev polynomials in the two infinite-dimensional fundamental fusion matrices X
and Y corresponding to the fundamental representations (2, 1) and (1, 2), respectively. In terms
of this realization, we have identified the quotient polynomial ring structure isomorphic to the
fundamental fusion algebra itself. This extends the regime of validity of Gepner’s result [4] on
the existence of such a quotient polynomial ring isomorphic to a rational conformal field theory
to the irrational logarithmic minimal models. We have found, though, that the conjectured
existence of an associated polynomial fusion potential [4] does not extend straightforwardly to
the logarithmic minimal models, that is, there is no polynomial fusion potential in the fusion
matrices X and Y. We have worked out explicit realizations of the fundamental fusion matrices
in the cases of critical dense polymers LM(1, 2) and critical percolation LM(2, 3), and hence
of the full fusion-matrix realizations of the associated fundamental fusion algebras. We have
verified that these explicit matrices satisfy the basic constraints underlying our construction
of the fusion rings.

The fundamental fusion algebras presented in [2, 3] are supported, within a lattice
formulation, by extensive numerical studies of associated integrable lattice models. Despite
the vastness of this numerical data set, the fusion rules can only be considered conjectural.
It is therefore very reassuring that the fusion algebra is isomorphic to a polynomial fusion
ring whose ideal is defined by a single vanishing condition which, in turn, corresponds to
the natural identification of the two irreducible highest weight representations (2p, p′) and
(p, 2p′) of identical conformal weights.
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Appendix A. Chebyshev polynomials

A.1. Chebyshev polynomials of the first kind

Recursion relation:

Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, . . . . (A.1)

Initial conditions:

T0(x) = 1, T1(x) = x. (A.2)

Examples:

T2(x) = 2x2 − 1 T3(x) = 4x3 − 3x
(A.3)

T4(x) = 8x4 − 8x2 + 1 T5(x) = 16x5 − 20x3 + 5x.

A.2. Chebyshev polynomials of the second kind

Recursion relation:

Un(x) = 2xUn−1(x) − Un−2(x), n = 2, 3, . . . . (A.4)

Initial conditions:

U0(x) = 1, U1(x) = 2x. (A.5)

Examples:

U2(x) = 4x2 − 1 U3(x) = 8x3 − 4x
(A.6)

U4(x) = 16x4 − 12x2 + 1 U5(x) = 32x5 − 32x3 + 6x.

Extension:

U−1(x) = 0. (A.7)

Decomposition of product:

Um(x)Un(x) =
m+n∑

j=|m−n|, by 2

Uj(x). (A.8)

A.3. Relating Chebyshev polynomials of the first and second kinds

Basic relation:

2Tn(x) = Un(x) − Un−2(x), n ∈ N. (A.9)

Generalization of the basic relation (A.9):

2Tn(x)Um−1(x) =

⎧⎪⎪⎨
⎪⎪⎩

Un+m−1(x) − U|n−m|−1(x), n > m

Un+m−1(x), n = m

Un+m−1(x) + U|n−m|−1(x), n < m.

(A.10)
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Applying (A.9) and (A.8) in the given order to the left-hand side of (A.10) yields a difference
of two sums which simplifies to the right-hand side of (A.10).

Special expansions, with p ∈ N:

U(2n+1)p−1(x) =
⎛
⎝1 + 2

n∑
j=1

T2jp(x)

⎞
⎠ Up−1(x)

(A.11)

U2np−1(x) = 2
n∑

j=1

T(2j−1)p(x)Up−1(x).

These relations follow by induction in n. In particular, the induction step used in establishing
the first relation reads

U(2n+1)p−1(x) = 2T2np(x)Up−1(x) + U(2n−1)p−1(x)

= 2T2np(x)Up−1(x) +

⎛
⎝1 + 2

n−1∑
j=1

T2jp(x)

⎞
⎠ Up−1(x)

=
⎛
⎝1 + 2

n∑
j=1

T2jp(x)

⎞
⎠ Up−1(x), (A.12)

where the first equality is a consequence of (A.10). The second relation in (A.11) follows
similarly.

Derivative:

∂xTn(x) = nUn−1(x), n ∈ N ∪ {0}. (A.13)

Appendix B. Fusion potential

For 1 � p < p′, we now show that the single constraint M(x, y) = 0, where M(x, y) =
Mp,p′(x, y) is defined in (3.3) with [x, y] = 0, cannot be derived from a polynomial potential
V (x, y) as the condition defining the local extrema of V (x, y). The conditions for local
extrema imply that the partial derivatives of V (x, y) must vanish modulo M(x, y). Also,
since M(x, y) must be generated from V (x, y), the former must be expressible as a linear
combination of the partial derivatives of the latter. We can thus characterize the polynomial
potential V (x, y) by the conditions

∂xV (x, y) = f (x, y)M(x, y), ∂yV (x, y) = g(x, y)M(x, y)

α∂xV (x, y) + β∂yV (x, y) = M(x, y) (B.1)

for some α, β ∈ C and polynomials f (x, y) and g(x, y). We have four situations, depending
on α and β being 0 or not, all of which we now discard one by one. Assuming α = β = 0,
we are immediately faced with the contradiction M(x, y) = 0. It is noted that since M(x, y)

is asymmetric in its dependence on x and y due to the inequality p < p′, the two cases
α = 0, β �= 0 and α �= 0, β = 0 should be treated separately.

Assuming α �= 0, β = 0, we integrate α∂xV (x, y) = M(x, y) to obtain

V (x, y) = 1

α

(
1

2p
T2p(x)Up′−1(y) − 1

p
Tp(x)U2p′−1(y)

)
+ V̄ (y) (B.2)
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for some polynomial V̄ (y), thus implying

1

α

(
1

2p
T2p(x)U ′

p′−1(y) − 1

p
Tp(x)U ′

2p′−1(y)

)
+ V̄ ′(y)

= g(x, y)(U2p−1(x)Up′−1(y) − Up−1(x)U2p′−1(y)). (B.3)

Considering this as an identification of polynomials in x with focus on the leading terms, we
find that

1

2pα
(22p−1x2p)(2p′−1(p′ − 1)yp′−2) + · · · = g(x, y)(22p−1x2p−1)(2p′−1yp′−1) + · · · . (B.4)

Matching these for g(x, y) polynomial (in y, in particular) requires p′ = 1 and g(x, y) = 0,
but 1 � p < p′.

Assuming α = 0, β �= 0, we likewise obtain the requirement p = 1 and f (x, y) = 0.
This implies ∂xV (x, y) = 0 and ∂yV (x, y) = xUp′−1(y) − U2p′−1(y). Integrating the latter
with respect to y yields a potential V (x, y) with non-trivial dependence on x in contradiction
with ∂xV (x, y) = 0.

Assuming α �= 0, β �= 0, polynomial identification yields αf (x, y) + βg(x, y) = 1 and
we are left with the two conditions

∂xV (x, y) = f (x, y)M(x, y), ∂yV (x, y) = 1

β

(
1 − αf (x, y)

)
M(x, y). (B.5)

We compute the double derivatives

∂y∂xV (x, y) = ∂yf (x, y)M(x, y) + f (x, y)∂yM(x, y)
(B.6)

∂x∂yV (x, y) = −α

β
∂xf (x, y)M(x, y) +

1

β
(1 − αf (x, y))∂xM(x, y).

If f (x, y) = 0, we have ∂y∂xV (x, y) = 0 and ∂x∂yV (x, y) = (1/β)∂xM(x, y) �= 0 so
f (x, y) �= 0. From (B.6), we read off the bounds

degx[∂y∂xV (x, y)] � degxf (x, y) + degxM(x, y)
(B.7)

degx[∂x∂yV (x, y)] � degxf (x, y) + degxM(x, y) − 1,

where degxh(x, y) denotes the degree of h(x, y) as a polynomial in x. An inconsistency is
thus reached if the first bound is saturated. From

∂y∂xV (x, y) = U2p−1(x)∂y[f (x, y)Up′−1(y)] − Up−1(x)∂y[f (x, y)U2p′−1(y)] (B.8)

and the expansion f (x, y) = xdf f0(y) + · · ·, where df = degxf (x, y) (such that f0(y) �= 0
since f (x, y) �= 0), we conclude that saturation of the first inequality (B.7) is prevented if
and only if ∂y[f0(y)Up′−1(y)] = 0. Since p′ > 1, the polynomial Up′−1(y) is non-constant
implying the sought contradiction f0(y) = 0.

Considering (3.18), we thus conclude that the conjectured existence of a polynomial fusion
potential in the case of a rational conformal field theory [4] does not extend straightforwardly
to the irrational LM(p, p′).

It is noted that having fewer polynomial conditions (here only M(x, y) = 0) than
variables (here x and y) is not enough to prevent a polynomial potential from existing. A
single polynomial condition given by a function of αx + βy only, for example, can be easily
integrated to yield the desired potential. It was the particular ‘semi-factorized’ form of
the single condition M(x, y) = 0 above which allowed us to exclude the possibility of a
polynomial potential.
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